Synchronous oscillatory electro-inertial focusing of microparticles

Author:

Vishwanathan Giridar1ORCID,Juarez Gabriel1ORCID

Affiliation:

1. Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign , Urbana, Illinois 61801, USA

Abstract

Here, results are presented on the focusing of 1μm polystyrene particle suspensions using a synchronous oscillatory pressure-driven flow and oscillatory electric field in a microfluidic device. The effect of the phase difference between the oscillatory fields on the focusing position and focusing efficiency was investigated. The focusing position of negatively charged polystyrene particles could be tuned anywhere between the channel centerline to the channel walls. Similarly, the focusing efficiency could range from 20% up to 90%, depending on the phase difference, for particle Reynolds numbers of order O(10−4). The migration velocity profile was measured and the peak velocity was found to scale linearly with both the oscillatory pressure-driven flow amplitude and the oscillatory electric field amplitude. Furthermore, the average migration velocity was observed to scale with the cosine of the phase difference between the fields, indicating the coupled non-linear nature of the phenomenon. Last, the peak migration velocity was measured for different particle radii and found to have an inverse relation, where the velocity increased with decreasing particle radius for identical conditions.

Publisher

AIP Publishing

Subject

Condensed Matter Physics,General Materials Science,Fluid Flow and Transfer Processes,Colloid and Surface Chemistry,Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3