Fourth-order stability analysis for capillary-gravity waves on finite-depth currents with constant vorticity

Author:

Dhar A. K.1ORCID,Kirby James T.2ORCID

Affiliation:

1. Department of Mathematics, Indian Institute of Engineering Science and Technology 1 , Shibpur 711103, India

2. Center for Applied Coastal Research, Department of Civil and Environmental Engineering, University of Delaware 2 , Newark, Delaware 19716, USA

Abstract

We derive a fourth-order nonlinear evolution equation (NLEE) for narrow-banded Stokes wave in finite depth in the presence of surface tension and a mean flow with constant vorticity. The two-dimensional capillary-gravity wave motion on the surface of finite depth is considered here. The analysis is limited to one horizontal dimension, parallel to the direction of wave propagation, in order to take advantage of a formulation using potential flow theory. This evolution equation is then employed to examine the effect of vorticity on the Benjamin–Feir instability (BFI) of the Stokes capillary-gravity wave trains. It is found that the vorticity modifies significantly the modulational instability and in the case of finite depth, the combined effect of vorticity and capillarity is to enhance the instability growth rate influenced by capillarity when the vorticity is negative. The key point is that the present fourth-order analysis exhibits considerable deviations in the stability properties from the third-order analysis and gives better results consistent with the exact numerical results. Furthermore, the influence of linear shear current on Peregrine breather (PB) is studied.

Funder

National Science Foundation

Indian Institute of Science and Technology

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Reference56 articles.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3