Theory of magnetic-field effect on trions in two-dimensional materials

Author:

Chang Yao-Wen12ORCID,Chang Yia-Chung1ORCID

Affiliation:

1. Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan

2. Physics Division, National Center for Theoretical Sciences, Taipei 10617, Taiwan

Abstract

In this work, we present a theoretical method to study the effect of magnetic field on trions in two-dimensional materials. The trion is modeled by a three-particle Schrödinger equation and the magnetic-field interaction is included by means of a vector potential in symmetric gauge. By using a coordinate transformation and a unitary transformation, the trion Hamiltonian can be converted into the sum of a translational term describing the Landau quantization for the trion center-of-mass motion, an internal term describing the trion binding, and a translational–internal coupling term depending linearly on the magnetic-field strength. The trion eigenenergy and wavefunction can then be calculated efficiently by using a variational method, and the quantum numbers of trions in magnetic fields can be assigned. The eigenenergies, binding energies, and correlation energies of three trion branches, which correspond to the ground-state trion and two excited-state trions solved from the trion Hamiltonian in zero magnetic field, are studied numerically in finite magnetic fields. The present method is applied to study the magnetic-field dependence of trion energy levels in hole-doped WSe2 monolayers. The binding energies and correlation energies of positive trions in WSe2 are investigated over a range of magnetic fields up to 25 T.

Funder

Ministry of Science and Technology, Taiwan

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3