Structural properties of grain boundary in graphene grown on germanium substrates with different orientations

Author:

Wang Yalan12,Zhang Miao1,Li Panlin12,Chen Xinqian3,Xue Zhongying1,Wu Xing3ORCID,Di Zengfeng1ORCID

Affiliation:

1. State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Road, Shanghai 200050, China

2. Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China

3. Shanghai Key Laboratory of Multidimensional Information Processing, School of Communication and Electronic Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China

Abstract

The direct synthesis of graphene with high-quality on semiconducting germanium (Ge) substrates has been developed recently, which has provided a promising way to integrate graphene with semiconductors for the application of electronic devices. However, the defects such as grain boundaries (GBs) introduced during the growth process have a significant influence on the crystalline quality of graphene and the performance of related electronic devices. Therefore, the investigation of the formation of GBs in graphene grown on a Ge substrate is essential for optimizing the crystalline quality of graphene. Herein, the formation mechanism and microstructure of GBs in graphene grown on Ge (110), Ge (001), and Ge (111) substrates via a chemical vapor deposition method are revealed. Ex situ atomic force microscopy is utilized to monitor the evolution of graphene domains. It is found that a single crystalline graphene film without GBs is formed on Ge (110), while polycrystalline graphene films with GBs are grown on Ge (001) and Ge (111) substrates, as suggested by transmission electron microscopy and x-ray photoelectron spectroscopy measurements. Our work may motivate the future exploration in improving the crystalline quality of graphene grown on a semiconducting substrate and the performance of associated electronic devices.

Funder

National Natural Science Foundation of China

Key Research Project of Frontier Science, Chinese Academy of Sciences

Science and Technology Innovation Action Plan of Shanghai Science and Technology Committee

Strategic Priority Research Programof the Chinese Academy of Sciences

Key Research Program of the Chinese Academy of Sciences

Science and Technology Commission of Shanghai Municipality

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3