Accurate diffusion coefficients of the excess proton and hydroxide in water via extensive ab initio simulations with different schemes

Author:

Muñoz-Santiburcio Daniel1ORCID

Affiliation:

1. CIC nanoGUNE BRTA, Tolosa Hiribidea 76, 20018 San Sebastián, Spain and Instituto de Fusión Nuclear “Guillermo Velarde,” Universidad Politécnica de Madrid, C/ José Gutiérrez Abascal 2, 28006 Madrid, Spain

Abstract

Despite its simple molecular formula, obtaining an accurate in silico description of water is far from straightforward. Many of its very peculiar properties are quite elusive, and in particular, obtaining good estimations of the diffusion coefficients of the solvated proton and hydroxide at a reasonable computational cost has been an unsolved challenge until now. Here, I present extensive results of several unusually long ab initio molecular dynamics (MD) simulations employing different combinations of the Born–Oppenheimer and second-generation Car–Parrinello MD propagation methods with different ensembles (NVE and NVT) and thermostats, which show that these methods together with the RPBE-D3 functional provide a very accurate estimation of the diffusion coefficients of the solvated H3O+ and OH ions, together with an extremely accurate description of several properties of neutral water (such as the structure of the liquid and its diffusion and shear viscosity coefficients). In addition, I show that the estimations of [Formula: see text] and [Formula: see text] depend dramatically on the simulation length, being necessary to reach timescales in the order of hundreds of picoseconds to obtain reliable results.

Funder

Horizon 2020 Framework Program

Comunidad de Madrid

Partnership for Advanced Computing in Europe AISBL

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Reference84 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3