Improved surface acidity of niobium doped tungstated-zirconia solid acid catalyst over production of 5-hydroxymethylfurfural

Author:

Wang Xiaojun12,Lu Ni2,Fu Yuanyi2,Lu Chang2,Guan Meili2,Wang Kunhua12,Yu Hao12

Affiliation:

1. College of Energy Storage Technology, Shandong University of Science and Technology a , Qingdao 266590, China

2. College of Chemical and Biological Engineering, Shandong University of Science and Technology b , Qingdao 266590, China

Abstract

The 5-hydroxymethylfurfural (5-HMF) acts as an important chemical intermediate to bridge the biomass resources and industrial applications, which shows the potential for green development. However, the performance of biomass materials conversion to 5-HMF is still limited in the green solvent. Herein, an effective approach is reported to prepare the highly efficient solid acid catalysts, NbOx/WOy-ZrO2, to improve fructose conversion. It is found that the introduction of Nb results in the generation of the niobium oxides, which improves acid sites and tunes the ratios of Brønsted acid and Lewis acid on the surface of the WOy-ZrO2 support. With the acidity improvement and increasing acid sites of the NbOx/WOy-ZrO2, the highest fructose conversion is 99% in water. Meanwhile, the 5-HMF yield and the selectivity are also as high as 50.1% and 50.7% under the reaction temperature of 180 °C for a short reaction time of 30 min. The proposed NbOx/WOy-ZrO2 catalyst strategy will not only open a new way for designing the solid acid catalysts to achieve high performance of the 5-HMF in the water, but also promote the green production of biomass and sustainable development in the future.

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3