Reaction mechanism of one-step conversion of ethanol to 1,3-butadiene over Zn-Y/BEA and superior catalysts screening

Author:

Dang Shu-Xuan1,Liu Han-Xuan1,Ban Tao1,Gao Xin1,Huang Zheng-Qing1,Yang Dong-Yuan2,Chang Chun-Ran13

Affiliation:

1. Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China

2. Shaanxi Yanchang Petroleum (Group) Corp. Ltd., Xi’an 710065, China

3. Shaanxi Key Laboratory of Low Metamorphic Coal Clean Utilization, School of Chemistry and Chemical Engineering, Yulin University, Yulin 719000, China

Abstract

The one-step conversion of ethanol to 1,3-butadiene has achieved a breakthrough with the development of beta zeolite supported dual metal catalysts. However, the reaction mechanism from ethanol to butadiene is complex and has not yet been fully elucidated, and no catalyst screening effort has been done based on central metal atoms. In this work, density functional theory (DFT) calculations were employed to study the mechanism of one-step conversion of ethanol to butadiene over Zn-Y/BEA catalyst. The results show that ethanol dehydrogenation prefers to proceed on Zn site with a reaction energy of 0.77 eV in the rate-determining step, and the aldol condensation to produce butadiene prefers to proceed on Y site with a reaction energy of 0.69 eV in the rate-determining step. Based on the mechanism revealed, six elements were selected to replace Y for screening superior combination of Zn-M/BEA (M=Sn, Nb, Ta, Hf, Zr, Ti; BEA: beta polymorph A) for this reaction. As a result, Zn-Y/BEA (0.69 eV) is proven to be the most preferring catalyst compared with the other six ones, and Zn-Zr/BEA (0.85 eV), Zn-Ti/BEA (0.87 eV), and Zn-Sn/BEA (0.93 eV) can be potential candidates for the conversion of ethanol to butadiene. This work not only provides mechanistic insights into one-step catalytic conversion of ethanol to butadiene over Zn-Y/BEA catalyst but also offers more promising catalyst candidates for this reaction.

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3