On-the-fly nonadiabatic dynamics of caffeic acid sunscreen compound

Author:

Kang Xu1,Zhu Yifei1,Zhang Juanjuan1,Xu Chao1,Lan Zhenggang1

Affiliation:

1. SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety. and MOE Key Laboratory of Environmental Theoretical Chemistry, School of Environment, South China Normal University , Guangzhou 510006, China

Abstract

As a widely-used sunscreen compound, the caffeic acid (CA) shows the strong UV absorption, while the photoinduced reaction mechanisms behind its photoprotection ability are not fully understood. We try to investigate the photoinduced internal conversion dynamics of CA in order to explore the photoprotection mechanism. The most stable CA isomer is selected to examine its nonadiabatic dynamics using the on-the-fly surface hopping simulations at the semi-empirical level of electronic-structure theory. The dynamics starting from different electronic states are simulated to explore the dependence of the photoinduced reaction channels on the excitation wavelengths. Several S1/S0 conical intersections, driven by the H-atom detachments and the ring deformations, have been found to be responsible for the nonadiabatic decay of the CA. The simulation results show that the branching ratios towards these intersections are modified by the light with different excitation energies. This provides the valuable information for the understanding of the photoprotection mechanism of the CA compound.

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3