Affiliation:
1. Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fudan University, Shanghai 200438, China
Abstract
In this work, we used time-sliced ion velocity imaging to study the photodissociation dynamics of MgO at 193 nm. Three dissociation pathways are found through the speed and angular distributions of magnesium. One pathway is the one-photon excitation of MgO(X1Σ+) to MgO(G1Π) followed by spin-orbit coupling between the G1Π, 33Π and 15Π states, and finally dissociated to the Mg(3Pu)+O(3Pg) along the 15Π surface. The other two pathways are one-photon absorption of MgO(A1Π) state to MgO(G1Π) and MgO(41Π) state to dissociate into Mg(3Pu)+O(3Pg) and Mg(1Sg)+O(1Sg), respectively. The anisotropy parameters of the dissociation pathways are related to the lifetime of the vibrational energy levels and the coupling of rotational and vibronic spin-orbit states. The total kinetic energy analysis gives D0(Mg−O)=21645±50 cm−1.
Subject
Physical and Theoretical Chemistry
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献