Theoretical investigations on photodissociation dynamics of deuterated alkyl halides CD3CH2F

Author:

Gu Shuangfei1,Chin Chih-Hao12,Zhu Tong12,Zhang John Zeng Hui123

Affiliation:

1. Shanghai Engineering Research Center for Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China

2. NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200122, China

3. Department of Chemistry, New York University, New York 10003, USA

Abstract

The product branching ratio between different products in multichannel reactions is as important as the over-all rate of reaction, both in terms of practical applications ( e.g. models of combustion or atmosphere chemistry) in understanding the fundamental mechanisms of such chemical reactions. A global ground state potential energy surface for the dissociation reaction of deuterated alkyl halide CD3CH2F was computed at the CCSD(T)/CBS//B3LYP/aug-cc-pVDZ level of theory for all species. The decomposition of CD3CH2F is controversial concerning C−F bond dissociation reaction and molecular (HF, DF, H2, D2, HD) elimination reaction. Rice-Ramsperger-Kassel-Marcus (RRKM) calculations were applied to compute the rate constants for individual reaction steps and the relative product branching ratios for the dissociation products were calculated using the steady-state approach. At the different energies studied, the RRKM method predicts that the main channel for DF or HF elimination from 1,2-elimination of CD3CH2F is through a four-center transition state, whereas D2 or H2 elimination from 1,1-elimination of CD3CH2F occurs through a direct three-center elimination. At 266, 248, and 193 nm photodissociation, the main product CD2CH2+DF branching ratios are computed to be 96.57%, 91.47%, and 48.52%, respectively; however, at 157 nm photodissociation, the product branching ratio is computed to be 16.11%. Based on these transition state structures and energies, the following photodissociation mechanisms are suggested: at 266, 248, 193 nm, CD3CH2F→absorption of a photon→TS5→the formation of the major product CD2CH2+DF; at 157 nm, CD3CH2F→absorption of a photon→D/F interchange of TS1→CDH2CDF→H/F interchange of TS2→CHD2CHDF→the formation of the major product CHD2+CHDF.

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3