Investigation of ultrafast photoisomerization dynamics of azobenzene derivative (E)-1-phenyl-2-((triisopropylsilyl)ethynyl)diazene

Author:

Lin Yilan1,Wei Xiaofan1,Fang Dong2,Wang Ziyu1,Huang Yifan1,Li Tao2,Liu Weimin1

Affiliation:

1. School of Physical Science and Technology, ShanghaiTech University a , Shanghai 201210, China

2. School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University b , Shanghai 200240, China

Abstract

When exposed to light at a specific wavelength, azobenzene and its derivatives experience a transformation from trans form to cis form through isomerization. Due to its ability to change color upon illumination, azobenzene finds extensive use in various molecular devices and functional materials. However, despite significant researches focused on practical applications, there are still ongoing investigations into the underlying mechanisms governing azobenzene’s photochemical reactions and isomerization. In this study, we employ femtosecond stimulated Raman spectroscopy (FSRS), and transient absorption spectroscopy, in conjunction with quantum chemical calculations, to elucidate the ultrafast isomerization dynamics of an azobenzene derivative known as trans-AZOTIPS ((E)-1-phenyl-2-((triisopropylsilyl)ethynyl)diazene). The results demonstrate that upon photoexcitation, rapid isomerization occurs along the C−N=N bonds via the singlet excited state S1 to hot ground state (S0*) state transition. Additionally, we explore the impact of solvent viscosity on the isomerization process and find that the duration of isomerization remains unaffected by variations in solvent viscosity. These results suggest that the isomerization pathway involves a volume-conserving motion known as “hula twist”. After that, the vibrational cooling process is obtained in S0 state.

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3