Ultrafast intrinsic excited state localization m 2D layered As2S3 by interlayer bond formation

Author:

Li Xufeng1,Yao Li2,Tao Weijian1,Zhao Jin2,Zhu Haiming1

Affiliation:

1. Department of Chemistry, Zhejiang University a , Hangzhou 310027, China

2. Department of Physics, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, and ICQD /Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China b , Hefei 230026, China

Abstract

The family of two-dimensional (2D) layered materials with strong excitonic effect offers fascinating opportunities for studying excited state exciton behavior at 2D limit. While exciton dynamics in conventional 2D semiconductors (e.g. transition metal dichalcogenides) has been extensively studied, little is known about exciton properties and dynamics in 2D layered semiconductors with strong electron/exciton-phonon coupling. Here, by combining experimental and theoretical approaches, we reveal the intrinsic highly localized exciton (i.e. self-trapped exciton) in 2D layered As2S3, driven by strong exciton-phonon interaction. It is shown that photoexcited electron/hole charges in As2S3 localize spontaneously in ~110 fs, giving rise to large stokes-shifted and broad photoluminescence. An interlayer partial bond is formed between chalcogen atoms, triggering lattice distortion and carrier localization. Together with Urbach-Martienssen analysis, this study provides a comprehensive physical picture to understand the complex interplay between exciton and lattice dynamics in 2D semiconductors, which has strong implications to their optoelectronic properties and applications.

Publisher

AIP Publishing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3