Primary processes in bacterial reaction center revealed by femtosecond broadband fluorescence spectroscopy

Author:

Liu Heyuan12,Zhen Zhanghe1,Peng Lingfeng3,Chen Hailong123,Weng Yu-Xiang123

Affiliation:

1. The Laboratory of Soft Matter Physics, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences a , Beijing 100190, China

2. School of Physical Science, University of the Chinese Academy of Sciences b , Beijing 100049, China

3. Songshan Lake Materials Laboratory c , Dongguan 523808, China

Abstract

To gain a deeper understanding of the highly efficient mechanisms within the photosynthetic bacterial reaction center (BRC), we have employed femtosecond broadband fluorescence spectroscopy to investigate the dynamics of initial photo-induced energy transfer and charge separation in BRC at room temperature. Benefiting from the broadband spectral coverage inherent of this technique, two distinct transient emission species associated with bacteriochlorophylls B and P are directly identified, with Stokes shifts determined to be ~197 and 450 cm−1, respectively. The ultrafast energy transfers from bacteriopheophytin H to B (98 fs) and from B to P (170 fs) are unveiled through fitting the emission dynamics. Notably, the anticipated sub-200 fs lifetime of B emission significantly extends to ~400 fs, suggesting a plausible coupling between the electronic excited state of Band the vibronic states of P, potentially influencing the acceleration of the energy transfer process. These findings should pave the way for understanding the impact of vibronic dynamics on the photo-induced primary processes in the photosynthetic reaction center.

Publisher

AIP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3