Magnetic characterization of self-assembled nanostructures in cobalt ferrites using first-order reversal curve (FORC) analysis

Author:

Suraj M. V.1,Talaat A.1ORCID,Dodrill B. C.2,Wang Y.1,Lee J. K.1ORCID,Ohodnicki P. R.134

Affiliation:

1. Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA

2. Lake Shore Cryotronics, 575 McCorkle Blvd., Westerville, Ohio 43082, USA

3. Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA

4. Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA

Abstract

Magnetic ceramics are important for numerous technologically relevant applications with a detailed understanding of structure, property, and processing inter-relationships playing a critical role in tailoring magnetic properties. Spinel ferrites are a particularly interesting class of magnetic ceramics of chemical formula AB2O4, with applications including biomedical hyperthermia and high frequency electrical power conversion. In this contribution, we seek to investigate a unique class of Co-ferrites in which spinodal decomposition can produce a ferrite nanocomposite with chemistry and stress state fluctuating within the interior of crystalline grains on the nm-scale, resulting in corresponding fluctuations of intrinsic magnetic properties as well as exchange and magnetostatic interactions. Structural and magnetic characterization of spinel ferrite samples are carried out (1) in the as-milled state prior to thermal processing, (2) after chemical and structural homogenization with a thermal calcination step, and (3) in the spinodal decomposed state following a subsequent annealing treatment within the Co-ferrite miscibility gap. Of note is the formation of a wasp-waisted hysteresis loop which emerges for the spinodal decomposed Co-ferrite sample, indicative of more complex magnetization reversal processes at relatively large applied fields than for homogeneous Co-ferrite samples of similar particle size and identical nominal chemistry. First order reversal curve (FORC) analysis is applied to further characterize the magnetization response, and a conventional interpretation of observed features in the FORC contrast is presented to discuss potential dominant magnetization mechanisms. The work described here represents the first application of FORC to spinodal decomposed magnetic ceramics and provides a strong foundation for future investigations seeking to quantitatively describe the impacts of nm-scale chemical, structural, and magnetic fluctuations on magnetization processes in ferrite spinel nanocomposite systems.

Funder

Defense Advanced Research Projects Agency

Office of Naval Research

Advanced Magnetics for Power and Energy Development

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3