Island myriads in periodic potentials

Author:

Lazarotto Matheus J.12ORCID,Caldas Iberê L.2ORCID,Elskens Yves1ORCID

Affiliation:

1. Aix-Marseille Université, CNRS UMR 1 7345 PIIM, F-13397, Marseille Cedex 13, France

2. Instituto de Física, Universidade de São Paulo 2 , Rua do Matão 1371, São Paulo 05508-090, Brazil

Abstract

A phenomenon of emergence of stability islands in phase space is reported for two periodic potentials with tiling symmetries, one square and the other hexagonal, inspired by bidimensional Hamiltonian models of optical lattices. The structures found, here termed as island myriads, resemble web-tori with notable fractality and arise at energy levels reaching that of unstable equilibria. In general, the myriad is an arrangement of concentric island chains with properties relying on the translational and rotational symmetries of the potential functions. In the square system, orbits within the myriad come in isochronous pairs and can have different periodic closure, either returning to their initial position or jumping to identical sites in neighbor cells of the lattice, therefore impacting transport properties. As seen when compared to a more generic case, i.e., the rectangular lattice, the breaking of square symmetry disrupts the myriad even for small deviations from its equilateral configuration. For the hexagonal case, the myriad was found but in attenuated form, mostly due to extra instabilities in the potential surface that prevent the stabilization of orbits forming the chains.

Funder

Fundação de Amparo à Pesquisa do Estado de São Paulo

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Comite Francais d'Evaluation de la Cooperation Universitaire et Scientifique avec le Bresil

Publisher

AIP Publishing

Reference20 articles.

1. Amplitude instability and ergodic behavior for conservative nonlinear oscillator systems;Phys. Rev.,1969

2. Area preserving nontwist maps: Periodic orbits and transition to chaos;Physica D,1996

3. Chaos and two-dimensional random walk in periodic and quasiperiodic fields;Sov. Phys. JETP,1989

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dynamics and non-integrability of the double spring pendulum;Journal of Sound and Vibration;2024-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3