High areal-capacitance based extremely stable flexible supercapacitors using binder-free exfoliated graphite paper electrode

Author:

Yadav Jitendra Kumar1ORCID,Rani Bharti1,Tiwari Ajay1ORCID,Dixit Ambesh1ORCID

Affiliation:

1. Advanced Materials and Device (A-MAD) Laboratory, Department of Physics, Indian Institute of Technology Jodhpur , Jodhpur, India

Abstract

The highly porous and binder-free flexible paper electrodes can enhance the specific capacitance of symmetric supercapacitors (SCs) due to their large surface and effective ion diffusion pathways. We synthesized the exfoliated graphite (ExG) by the thermal exfoliation method of chemically treated graphite flakes and compressed it into a paper-like thin sheet (binder-free) of ∼0.15 mm thickness. The coin cell SCs with copper (Cu) and stainless steel (SS) as current collectors have been fabricated for the electrochemical measurement. The cyclic voltammetry and galvanostatic charge/discharge measurements are investigated at various scan rates and current densities. The SCs with Cu foil as a current collector perform better than SS-based SCs. The Cu current collector-based SCs showed a specific capacitance of 37.08 mF cm−2, whereas it was ∼29.98 mF cm−2 for SS-based SCs at a 0.01 V s−1 scan rate across a 0–0.6 V potential window. Approximately no degradation in charge storage capacity for more than 15 000 cycles at 0.1 V s−1 shows the ultra-stability of the flexible ExG-based binder-free electrodes. A digital watch is powered using the fabricated pouch cell supercapacitor with copper-based current collectors to show the potential of SCs.

Funder

Science and Engineering Research Board

Publisher

AIP Publishing

Subject

Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3