Scaling properties of RNA as a randomly branching polymer

Author:

Vaupotič Domen1ORCID,Rosa Angelo2ORCID,Tubiana Luca34ORCID,Božič Anže1ORCID

Affiliation:

1. Department of Theoretical Physics, Jožef Stefan Institute 1 , Jamova 39, 1000 Ljubljana, Slovenia

2. Scuola Internazionale Superiore di Studi Avanzati (SISSA) 2 , Via Bonomea 265, 34136 Trieste, Italy

3. Department of Physics, University of Trento 3 , via Sommarive 14, 38123 Trento, Italy

4. INFN-TIFPA, Trento Institute for Fundamental Physics and Applications 4 , via Sommarive 14, 38123 Trento, Italy

Abstract

Formation of base pairs between the nucleotides of a ribonucleic acid (RNA) sequence gives rise to a complex and often highly branched RNA structure. While numerous studies have demonstrated the functional importance of the high degree of RNA branching—for instance, for its spatial compactness or interaction with other biological macromolecules—RNA branching topology remains largely unexplored. Here, we use the theory of randomly branching polymers to explore the scaling properties of RNAs by mapping their secondary structures onto planar tree graphs. Focusing on random RNA sequences of varying lengths, we determine the two scaling exponents related to their topology of branching. Our results indicate that ensembles of RNA secondary structures are characterized by annealed random branching and scale similarly to self-avoiding trees in three dimensions. We further show that the obtained scaling exponents are robust upon changes in nucleotide composition, tree topology, and folding energy parameters. Finally, in order to apply the theory of branching polymers to biological RNAs, whose length cannot be arbitrarily varied, we demonstrate how both scaling exponents can be obtained from distributions of the related topological quantities of individual RNA molecules with fixed length. In this way, we establish a framework to study the branching properties of RNA and compare them to other known classes of branched polymers. By understanding the scaling properties of RNA related to its branching structure, we aim to improve our understanding of the underlying principles and open up the possibility to design RNA sequences with desired topological properties.

Funder

Javna Agencija za Raziskovalno Dejavnost RS

European Cooperation in Science and Technology

Centro Nazionale di Ricerca in HPC, Big Data and Quantum Computing

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3