Impact of cation modification on phonon-dressed exciton dynamics in a prototype two-dimensional hybrid organic–inorganic perovskite system

Author:

Ruan Zhoushilin1ORCID,Jiang Shenlong2ORCID,Zhang Qun123ORCID

Affiliation:

1. Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China 1 , Hefei, Anhui 230026, China

2. Hefei National Laboratory, University of Science and Technology of China 2 , Hefei, Anhui 230088, China

3. Department of Chemical Physics, University of Science and Technology of China 3 , Hefei, Anhui 230026, China

Abstract

Organic-cation engineering has recently proven effective in flexibly regulating two-dimensional hybrid organic–inorganic perovskites (2D HOIPs) to achieve a diversity of newly emerging applications. There have been many mechanistic studies based on the structural tunability of organic cations; nevertheless, those with an emphasis on the effect solely caused by the organic cations remain lacking. To this end, here we deliberately design a set of 2D HOIPs in which the inorganic layers are kept nearly intact upon cation modification, i.e., the precursor phenethylammonium lead iodide and its four derivatives with the phenyl group’s para-position H being replaced by CH3, F, Cl, and Br. By means of femtosecond time-resolved transient absorption spectroscopy and temperature-dependent/time-resolved photoluminescence spectroscopy, we interrogate the subtle impact of cation modification on phonon dynamics, coherent phonon modes, phonon-dressed exciton dynamics, and excitonic emissions. A concerted trend for phonon lifetimes and exciton relaxation lifetimes regulated by cation modification is revealed, evidencing the existence of strong exciton–phonon coupling in this 2D HOIP system. The observed mass effect can be ascribed to the change in moment of inertia of organic cations. In addition, we observe an interesting interplay of exciton kinetics pertinent to population transfers between two emissive states, likely linked to the subtle variation in crystal symmetry induced by cation modification. The mechanistic insights gained from this work would be of value for the 2D HOIPs-based applications.

Funder

National Key Research and Development Program of China

Innovation Program for Quantum Science and Technology

National Natural Science Foundation of China

Anhui Initiative in QIT

USTC Key Directions Project Incubation Fund

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3