Comprehensive characterization of irradiation induced defects in ceria: Impact of point defects on vibrational and optical properties

Author:

Chauhan Vinay S.1,Ferrigno Joshua1ORCID,Adnan Saqeeb1ORCID,Pakarinen Janne2,He Lingfeng3ORCID,Hurley David H.3,Khafizov Marat1ORCID

Affiliation:

1. Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, Ohio 43210, USA

2. VTT Technical Research Centre of Finland Ltd, Espoo FI-02044 VTT, Finland

3. Idaho National Laboratory, Idaho Falls, Idaho 84315, USA

Abstract

Validation of multiscale microstructure evolution models can be improved when standard microstructure characterization tools are coupled with methods sensitive to individual point defects. We demonstrate how electronic and vibrational properties of defects revealed by optical absorption and Raman spectroscopies can be used to compliment transmission electron microscopy (TEM) and x-ray diffraction (XRD) in the characterization of microstructure evolution in ceria under non-equilibrium conditions. Experimental manifestation of non-equilibrium conditions was realized by exposing cerium dioxide (CeO2) to energetic protons at elevated temperature. Two sintered polycrystalline CeO2 samples were bombarded with protons accelerated to a few MeVs. These irradiation conditions produced a microstructure with resolvable extended defects and a significant concentration of point defects. A rate theory (RT) model was parametrized using the results of TEM, XRD, and thermal conductivity measurements to infer point defect concentrations. An abundance of cerium sublattice defects suggested by the RT model is supported by Raman spectroscopy measurements, which show peak shift and broadening of the intrinsic T2g peak and emergence of new defect peaks. Additionally, spectroscopic ellipsometry measurements performed in lieu of optical absorption reveals the presence of Ce3+ ions associated with oxygen vacancies. This work lays the foundation for a coupled approach that considers a multimodal characterization of microstructures to guide and validate complex defect evolution models.

Funder

Basic Energy Sciences

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3