Machine-learning effective many-body potentials for anisotropic particles using orientation-dependent symmetry functions

Author:

Campos-Villalobos Gerardo1ORCID,Giunta Giuliana1ORCID,Marín-Aguilar Susana1ORCID,Dijkstra Marjolein1ORCID

Affiliation:

1. Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands

Abstract

Spherically symmetric atom-centered descriptors of atomic environments have been widely used for constructing potential or free energy surfaces of atomistic and colloidal systems and to characterize local structures using machine learning techniques. However, when particle shapes are non-spherical, as in the case of rods and ellipsoids, standard spherically symmetric structure functions alone produce imprecise descriptions of local environments. In order to account for the effects of orientation, we introduce two- and three-body orientation-dependent particle-centered descriptors for systems composed of rod-like particles. To demonstrate the suitability of the proposed functions, we use an efficient feature selection scheme and simple linear regression to construct coarse-grained many-body interaction potentials for computationally efficient simulations of model systems consisting of colloidal particles with an anisotropic shape: mixtures of colloidal rods and non-adsorbing polymer coils, hard rods enclosed by an elastic microgel shell, and ligand-stabilized nanorods. We validate the machine-learning (ML) effective many-body potentials based on orientation-dependent symmetry functions by using them in direct coexistence simulations to map out the phase behavior of colloidal rods and non-adsorbing polymer coils. We find good agreement with the results obtained from simulations of the true binary mixture, demonstrating that the effective interactions are well described by the orientation-dependent ML potentials.

Funder

The Netherlands Organisation for Scientific Research

Netherlands Center for Multiscale Catalytic Energy Conversion

H2020 European Research Council

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3