A differentially amplified Hall effect displacement sensor for positioning control of a long-range flexure stage

Author:

Park William1ORCID,Chun Heebum1ORCID,Nguyen Phuc1ORCID,Lee Chabum1ORCID

Affiliation:

1. J. Mike Walker ’66 Department of Mechanical Engineering, Texas A&M University 3123 TAMU , College Station, Texas 77843, USA

Abstract

This paper presents a novel positioning feedback sensor using a pair of Hall effect elements on a long-range flexure stage. The proposed Hall effect positioning feedback sensor eliminates error and uncertainty by measuring the center of the flexure stage, where a machine tool or measurement probes would take place in the industrial application. A pair of Hall effect elements were amplified in a differential configuration as the cylindrical permanent magnet enclosed in the center of the shuttle in the flexure stage that moves back and forth, generating a uniform gradient magnetic flux intensity. Nonlinear magnetic flux characteristics of a single Hall effect element were eliminated, and high-quality sensor sensitivity was achieved by differential amplification of the two Hall effect elements. The magnetic field analysis to characterize the linearity of the proposed displacement sensor was simulated using the finite element method to prove that the non-linearity of a single hall effect element may be mitigated by employing the differential amplification technique. The flexure stage was additively manufactured into a monolithic structure, and the permanent magnet was fitted into the shuttle of the flexure stage. Each Hall effect element was placed on either side of the magnet at a certain distance on the axis of shuttle movement. The proposed sensor was characterized by performing dynamic system identification of the flexure stage: open-loop response and closed-loop response. The Laser Displacement Sensor (LDS) with the 10 nm resolution was used for baseline comparison and datum line with respect to the proposed sensor. The proposed sensor responses agreed well with LDS in various dynamic inputs. The sensor response was analyzed with two differential amplification signal processing techniques. The maximum sensitivity of the two signal processing techniques was determined to be 16.55 mV/μm, and the resolution was observed as 2.5 μm. In sum, the differentially amplified Hall effect displacement sensor achieved positioning feedback with high sensitivity and linearity and minimized the sensor placement error while maintaining low cost and simple configuration.

Publisher

AIP Publishing

Subject

Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3