Magnetic properties of Nd6Fe13Cu single crystals

Author:

Liu Jianing1ORCID,Xie Ruiwen2ORCID,Aubert Alex1ORCID,Schäfer Lukas1ORCID,Zhang Hongbin2ORCID,Gutfleisch Oliver1ORCID,Skokov Konstantin1ORCID

Affiliation:

1. Functional Materials, TU Darmstadt 1 , Darmstadt 64287, Germany

2. Theory Magnetic Materials, TU Darmstadt 2 , Darmstadt 64287, Germany

Abstract

The understanding of a coercivity mechanism in high performance Nd–Fe–B permanent magnets relies on the analysis of magnetic properties of all phases present in magnets. By adding Cu in such compounds, a new Nd6Fe13Cu grain boundary phase is formed; however, the magnetic properties of this phase and its role in the magnetic decoupling of matrix Nd2Fe14B grains are still insufficiently studied. In this work, we have grown Nd6Fe13Cu single crystals by the reactive flux method and studied their magnetic properties in detail. It is observed that below the Néel temperature (TN = 410 K), Nd6Fe13Cu is antiferromagnetic in zero magnetic field; whereas when a magnetic field is applied along the a-axis, a spin-flop transition occurs at approximately 6 T, indicating a strong competition between antiferromagnetic and ferromagnetic interactions in two Nd layers below and above the Cu layers. Our atomistic spin dynamics simulation confirms that an increase in the temperature and/or magnetic field can significantly change the antiferromagnetic coupling between the two Nd layers below and above the Cu layers, which, in turn, is the reason for the observed spin-flop transition. These results suggest that the role of an antiferromagnetic Nd6Fe13Cu grain boundary phase in the coercivity enhancement of Nd–Fe–B–Cu magnets is more complex than previously thought, mainly due to the competition between its antiferro- and ferromagnetic exchange interactions.

Funder

Deutsche Forschungsgemeinschaft

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3