Effect of blade chord length on startup performance of H-type tidal current turbine rotor

Author:

Wang Zhiyuan1ORCID,Kang Can1ORCID,Zhang Yongchao1ORCID,Kim Hyoung-Bum2ORCID,Jin Feng3ORCID

Affiliation:

1. School of Energy and Power Engineering, Jiangsu University 1 , Zhenjiang 212013, China

2. School of Mechanical and Aerospace Engineering, Gyeongsang National University 2 , Jinju 52828, South Korea

3. Zibo City Planning and Design Research Institute Co., Ltd. 3 , Zibo 255033, China

Abstract

This study aims to reveal the effect of the blade chord length on the startup performance of the lift rotor that converts the kinetic energy of tidal currents. The computational fluid dynamics technique was used to simulate unsteady flows around the rotor. The six degrees of freedom method was adopted to model the correlation between the rotational speed of the rotor and influential torques acting on the rotor. A comparative analysis of transient flows, rotational speed, and output torque was implemented at different initial azimuthal angles. The results show that as the rotor starts up at the minimum torque, the time required to attain the maximum rotational speed is longer than that associated with the maximum torque. As the maximum rotational speed is reached, low-pressure elements are produced in the area enclosed by the rotor blades, which is insensitive to the initial setting angle. A large area of low pressure is responsible for low output torque. During the startup process, the rotational speed experiences stages of sharp increase, fluctuating decrease, and moderate fluctuation, as is common at different blade chord lengths. As the chord length increases from 0.16 to 0.24 m, the startup process is extended by 0.63 s, and the average rotational speed in the stabilization stage decreases.

Funder

Special Funds of Jiangsu Science and Technology Plan for Innovation Support Program of International Cooperation

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3