Effect of kerosene injection states on mixing and combustion characteristics in supersonic combustor at high equivalent ratio

Author:

Liu XuORCID,Li PeiboORCID,Li FeiORCID,Wang Chao,Yang XiaolongORCID,Wang HongboORCID,Sun MingboORCID,Yang YixinORCID,Xiong DapengORCID,Wang Yanan

Abstract

Previous studies have found that the difference in combustion characteristics of gaseous and liquid kerosene injection in supersonic combustor is sensitive to the equivalent ratio. In this paper, the previous work is extended to a high equivalent ratio to gain a deeper understanding of the effect of injection states on combustion performance via numerical computation. The simulation results match well with the experiments and demonstrate that due to the different jet structures, the cavity shear layer of liquid injection penetrates deeply into the cavity, forming two recirculation zones therein. As a result, the majority of droplets enter the cavity and exist at a low streamwise velocity, which is favorable to droplet vaporization and combustion. Therefore, when the liquid fuel is injected at a high equivalent ratio, the fuel residence time increases, the droplet evaporation distance decreases, and the fuel vapor accumulates in the cavity. Compared to the gaseous injection with the same equivalent ratio, the liquid injection exhibits similar mixing efficiency in the cavity but slightly higher mixing efficiency in downstream divergent sections. This unique fuel distribution causes the liquid injection to have a higher combustion efficiency than that of the gaseous injection. The weak advantage in mixing and combustion makes the liquid injection capable of compensating for the effects of the fuel atomization and evaporation on combustion performance. As a result, the combustion structure and static pressure distribution of liquid injection with the high equivalent ratio is similar to those of the gaseous injection.

Funder

National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3