Chern number transition of quantum anomalous hall phases in kagome TM3Te4 (TM = Ti, Cr) monolayers by manipulating magnetization orientation

Author:

Lu Jinlian1,Xu Xiaokang2,Duan Yuanyuan2,Sun Yi2,Guan Donghao2,Chen Anjie2,Yao Xiaojing3ORCID,He Ailei2ORCID,Zhang Xiuyun24ORCID

Affiliation:

1. Department of Physics, Yancheng Institute of Technology 1 , Yancheng, Jiangsu 224051, China

2. College of Physics Science and Technology, Yangzhou University 2 , Yangzhou 225002, China

3. College of Physics and Hebei Advanced Thin Films Laboratory, Hebei Normal University 3 , Shijiazhuang 050024, China

4. Key Laboratory of Quantum Materials and Devices (Southeast University), Ministry of Education 4 , Nanjing 20089, China

Abstract

The development of quantum anomalous hall (QAH) insulator with high transition temperature is the key to realize practical applications in future quantum technology and spintronics. Here, we predicted two stable two-dimensional kagome structures, Ti3Te4 and Cr3Te4, and found that both of them are intrinsic QAH insulators, using density functional theory calculations. In the absence of spin–orbit coupling (SOC), both systems display ferromagnetism (FM) Weyl semimetal states. Remarkably, Ti3Te4 monolayer is revealed to be a robust ferromagnetic half metal with high Curie temperature (TC) of 403 K. When the SOC effect occurs, it spontaneously creates QAH states with large nontrivial bandgap and chiral edge states. As a result, the Ti(Cr)3Te4 monolayer is changed to be QAH insulators with Chern number C = ±1 by rotation of magnetization orientation. In addition, the phase change from FM QAH insulator to antiferromagnetic insulator can be manipulated by applying external strains. Moreover, a high-Chern number phase (C = 2) arises by building Ti3Te4/MoS2/Ti3Te4 heterostructure. Meanwhile, the topological phase transition can be well recurred by using a spinless three-band tight-binding (TB) model. The findings present ways to realize potential QAH insulators with high transition temperatures.

Funder

National Natural Science Foundation of China

Six Talent Peaks Project in Jiangsu Province

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3