The optimization of evaporation rate in graphene-water system by machine learning algorithm

Author:

Qiao Degao12ORCID,Yang Ming1,Gao Yin1,Hou Jue2ORCID,Zhang Xingli2ORCID,Zhang Hang1ORCID

Affiliation:

1. Institute of Engineering Thermophysics, Chinese Academy of Sciences 1 , Beijing 100190, China

2. College of Mechanical and Electrical Engineering, Northeast Forestry University 2 , Harbin 150040, China

Abstract

Solar interfacial evaporation, as a novel practical freshwater production method, requires continuous research on how to improve the evaporation rates to increase water production. In this study, sets of data were obtained from molecule dynamics simulation and literature, in which the parameters included height, diameter, height–radius ratio, evaporation efficiency, and evaporation rate. Initially, the correlation between the four input parameters and the output of the evaporation rate was examined through traditional pairwise plots and Pearson correlation analysis, revealing weak correlations. Subsequently, the accuracy and generalization performance of the evaporation rate prediction models established by neural network and random forest were compared, with the latter demonstrating superior performance and reliability confirmed via random data extraction. Furthermore, the impact of different percentages (10%, 20%, and 30%) of the data on the model performance was explored, and the result indicated that the model performance is better when the test set is 20% and all the constructed model converge. Moreover, the mean absolute error and mean squared error of the evaporation rate prediction model for the three ratios were calculated to evaluate their performance. However, the relationship between the height- radius ratio and optimal evaporation rate was investigated using the enumeration method, and it was determined that the evaporation efficiency was optimal when the height–radius ratio was 6. Finally, the importance of height, diameter, height– radius ratio, and evaporation efficiency were calculated to optimize evaporator structure, increase evaporation rate, and facilitate the application of interfacial evaporation in solar desalination.

Funder

Beijing Nova Program

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

Publisher

AIP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3