Effects of sequence-dependent non-native interactions in equilibrium and kinetic folding properties of knotted proteins

Author:

Especial João N. C.12ORCID,Faísca Patrícia F. N.12ORCID

Affiliation:

1. Departamento de Física 1 , Faculdade de Ciências, Ed. C8, Universidade de Lisboa, Campo Grande, Lisboa, Portugal

2. BioISI—Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa 2 , Campo Grande, Lisboa, Portugal

Abstract

Determining the role of non-native interactions in folding dynamics, kinetics, and mechanisms is a classic problem in protein folding. More recently, this question has witnessed a renewed interest in light of the hypothesis that knotted proteins require the assistance of non-native interactions to fold efficiently. Here, we conduct extensive equilibrium and kinetic Monte Carlo simulations of a simple off-lattice C-alpha model to explore the role of non-native interactions in the thermodynamics and kinetics of three proteins embedding a trefoil knot in their native structure. We find that equilibrium knotted conformations are stabilized by non-native interactions that are non-local, and proximal to native ones, thus enhancing them. Additionally, non-native interactions increase the knotting frequency at high temperatures, and in partially folded conformations below the transition temperatures. Although non-native interactions clearly enhance the efficiency of transition from an unfolded conformation to a partially folded knotted one, they are not required to efficiently fold a knotted protein. Indeed, a native-centric interaction potential drives the most efficient folding transition, provided that the simulation temperature is well below the transition temperature of the considered model system.

Funder

Fundação para a Ciência e a Tecnologia

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3