Affiliation:
1. Institut für Theoretische Physik, Georg-August-Universität Göttingen 1 , 37077 Göttingen, Germany
2. King’s College London, Department of Mathematics 2 , Strand, London WC2R 2LS, United Kingdom
Abstract
Extending the famous model B for the time evolution of a liquid mixture, we derive an approximate expression for the mobility matrix that couples different mixture components. This approach is based on a single component fluid with particles that are artificially grouped into separate species labeled by “colors.” The resulting mobility matrix depends on a single dimensionless parameter, which can be determined efficiently from experimental data or numerical simulations, and includes existing standard forms as special cases. We identify two distinct mobility regimes, corresponding to collective motion and interdiffusion, respectively, and show how they emerge from the microscopic properties of the fluid. As a test scenario, we study the dynamics after a thermal quench, providing a number of general relations and analytical insights from a Gaussian theory. Specifically, for systems with two or three components, analytical results for the time evolution of the equal time correlation function compare well to results of Monte Carlo simulations of a lattice gas. A rich behavior is observed, including the possibility of transient fractionation.
Funder
Deutsche Forschungsgemeinschaft
Subject
Physical and Theoretical Chemistry,General Physics and Astronomy
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献