Ultrafast state-selective tunneling in two-dimensional semiconductors with a phase- and amplitude-controlled THz-scanning tunneling microscope

Author:

Bobzien L.1ORCID,Allerbeck J.1ORCID,Ammerman S. E.1ORCID,Torsi R.2ORCID,Robinson J. A.234ORCID,Schuler B.1ORCID

Affiliation:

1. nanotech@surfaces Laboratory, Empa - Swiss Federal Institute for Materials Science and Technology 1 , Dübendorf 8600, Switzerland

2. Department of Materials Science and Engineering, The Pennsylvania State University 2 , University Park, Pennsylvania 16082, USA

3. Two-Dimensional Crystal Consortium, The Pennsylvania State University 3 , University Park, Pennsylvania 16802, USA

4. Center for 2-Dimensional and Layered Materials, The Pennsylvania State University 4 , University Park, Pennsylvania 16802, USA

Abstract

THz-pulse driven scanning tunneling microscopy (THz-STM) enables access to the ultrafast quantum dynamics of low-dimensional material systems at simultaneous ultrafast temporal and atomic spatial resolution. State-selective tunneling requires precise amplitude and phase control of the THz pulses combined with quantitative near-field waveform characterization. Here, we employ our state-of-the-art THz-STM with multi-MHz repetition rates, efficient THz generation, and precisely tunable THz waveforms to investigate a single sulfur vacancy in monolayer MoS2. We demonstrate that 2D transition metal dichalcogenides (TMDs) are an ideal platform for near-field waveform sampling by THz cross-correlation. Furthermore, we determine the THz voltage via QEV scans, which measure the THz rectified charge Q as a function of THz field amplitude E and dc bias Vdc. Mapping the complex energy landscape of localized states with a resolution down to 0.01 electrons per pulse facilitates state-selective tunneling to the HOMO and LUMO orbitals of a charged sulfur vacancy.

Funder

European Research Council

National Institute of Standards and Technology

U.S. Department of Energy

National Science Foundation

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3