A combined model based on POA-VMD secondary decomposition and LSTM for ultra-short-term wind power forecasting

Author:

Yang Shaomei1ORCID,Qian Xiangyi1ORCID

Affiliation:

1. Department of Economics and Management, North China Electric Power University , 689 Huadian Road, Baoding 071000, China

Abstract

As the application of wind power expands, precise prediction of wind energy becomes essential for the effective plan and reliable functioning in the realm of the power system. Aiming to enhance wind power utilization efficiency and minimize error relating to ultra-short-term wind power forecasting, a novel model grounded in sliding time window, Pelican optimization algorithm-variational mode decomposition (POA-VMD) secondary decomposition, sample entropy calculation, sequence reconstruction, and long short-term memory (LSTM) prediction is introduced in this paper. First, in the training set, the sliding time window technique is employed to identify the optimal parameters for the forecasting algorithm, aiming to closely replicate the actual forecasting performance. Subsequently, the VMD algorithm is enhanced through optimization with the POA. This involves utilizing POA to dynamically ascertain the optimal parameters [k, α] for VMD, allowing for an adaptive decomposition of the raw wind power data sequence and effectively diminishing data noise. After calculating each modal's sample entropy, the modal with the highest sample entropy is further decomposed using POA-VMD. The decomposed sequence is predicted using LSTM to get the final prediction. The experiment ultimately demonstrated that the introduced model markedly improves the accuracy of forecasting. By adding POA-VMD secondary decomposition residuals, the prediction errors, as measured by mean absolute error, root mean square error, and mean absolute percentage error, are decreased by 52.03%, 30.34%, and 39.87%, respectively, and coefficient of determination (R2) is increased by 7.75%.

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3