Fluorite-structured high-entropy oxide sputtered thin films from bixbyite target

Author:

Kotsonis George N.1ORCID,Almishal Saeed S. I.1ORCID,Miao Leixin1ORCID,Caucci Mary Kathleen2ORCID,Bejger Gerald R.3ORCID,Ayyagari Sai Venkata Gayathri1ORCID,Valentine Tyler W.4ORCID,Yang Billy E.1,Sinnott Susan B.125ORCID,Rost Christina M.34ORCID,Alem Nasim1,Maria Jon-Paul1

Affiliation:

1. Department of Materials Science and Engineering, The Pennsylvania State University 1 , University Park, Pennsylvania 16802, USA

2. Department of Chemistry, The Pennsylvania State University 2 , University Park, Pennsylvania 16802, USA

3. Department of Materials Science and Engineering, Virginia Polytechnic Institute and State University 3 , Blacksburg, Virginia 24060, USA

4. Department of Physics and Astronomy, James Madison University 4 , Harrisonburg, Virginia 22807, USA

5. Institute for Computational and Data Science, The Pennsylvania State University 5 , University Park, Pennsylvania, 16802, USA

Abstract

The prototype high-entropy oxide (HEO) Y0.2La0.2Ce0.2Pr0.2Sm0.2O2−δ represents a particularly complex class of HEOs with significant anion sublattice entropy. The system takes either a fluorite or bixbyite-type crystal structure, depending on synthesis kinetics and thermal history. Here, we synthesize bulk ceramics and epitaxial thin films of Y0.2La0.2Ce0.2Pr0.2Sm0.2O2−δ and use diffraction to explore crystal symmetry and phase. Thin films exhibit the high symmetry fluorite phase, while bulk ceramics adopt the lower symmetry bixbyite phase. The difference in chemical ordering and observed symmetry between vapor-deposited and reactively sintered specimens suggests that synthesis kinetics can influence accessible local atomic configurations, i.e., the high kinetic energy adatoms quench in a higher-effective temperature, and thus higher symmetry structure with more configurational entropy. More generally, this demonstration shows that recovered HEO specimens can exhibit appreciably different local configurations depending on synthesis kinetics, with potential ramifications on macroscopic physical properties.

Funder

National Science Foundation

Publisher

AIP Publishing

Reference32 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3