Multiphysics simulation of fluid interface shapes in microfluidic systems driven by electrowetting on dielectrics

Author:

Bohm Sebastian1ORCID,Runge Erich1ORCID

Affiliation:

1. Technische Universität Ilmenau, Institut für Physik and Institut für Mikro- und Nanotechnologien, 98693 Ilmenau, Germany

Abstract

We present a highly efficient simulation method for the calculation of three-dimensional quasi-static interface shapes under the influence of electric fields. The method is especially useful for the simulation of microfluidic systems driven by electrowetting on dielectrics because it accounts automatically and inherently for the highly non-trivial interface shape in the vicinity of the triple-phase contact. In particular, the voltage independence of the local contact angle predicted based on analytical considerations is correctly reproduced in all our simulations. For the calculation of the shape of the interface, the geometry is triangulated and the mesh nodes are shifted until the system energy becomes minimal. The same mesh is also used to calculate the electric field using the boundary-element method. Therefore, only the surface of the geometry needs to be meshed, and no volume meshes are involved. The method can be used for the simulation of closed systems with a constant volume (e.g., droplet-based microfluidics) while preserving the volume very precisely as well as open systems (e.g., the liquid–air interface within micro-cavities or capillaries). Additional effects, such as the influence of gravitational forces, can easily be taken into account. In contrast to other efficient simulations, such as the volume-of-fluid, level-set, or phase-field methods, ideally, sharp interfaces are obtained. We calculate interface shapes for exemplary systems and compare with analytical as well as experimental results.

Funder

Bundesministerium für Wirtschaft und Energie

Deutsche Forschungsgemeinschaft

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3