Microphase behaviors and shear moduli of double-network gels: The effect of crosslinking constraints and chain uncrossability

Author:

Zhang Jinrong1ORCID,Yan Dadong1ORCID,Qi Shuanhu2ORCID

Affiliation:

1. Department of Physics, Beijing Normal University 1 , Beijing 100875, China

2. School of Chemistry, Beihang University 2 , Beijing 100191, China

Abstract

By performing coarse-grained molecular dynamics simulations, we study the effect of crosslinking and chain uncrossability on the microphase behaviors and mechanical properties of the double-network gels. The double-network systems can be viewed as two separate networks interpenetrating each other uniformly, and the crosslinks in each network are generated, forming a regular cubic lattice. The chain uncrossability is confirmed by appropriately choosing the bonded and nonbonded interaction potentials. Our simulations reveal a close relation between the phase and mechanical properties of the double-network systems and their network topological structures. Depending on the lattice size and the solvent affinity, we have observed two different microphases: one is the aggregation of solvophobic beads around the crosslinking points, which leads to locally polymer-rich domains, and the other is the bunching of polymer strands, which thickens the network edges and thus changes the network periodicity. The former is a representation of the interfacial effect, while the latter is determined by the chain uncrossability. The coalescence of network edges is demonstrated to be responsible for the large relative increase in the shear modulus. Compressing and stretching induced phase transitions are observed in the current double-network systems, and the sharp discontinuous change in the stress that appears at the transition point is found to be related to the bunching or debunching of the network edges. The results suggest that the regulation of network edges has a strong influence on the network mechanical properties.

Funder

National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3