Comparative study on high-voltage safety performance of LiNixMnyCozO2 cathode with different nickel contents

Author:

Gan Luyu123,Chen Rusong123,Yang Xinyi2,Xu Xilin123,Zan Mingwei123,Li Quan13,Wang Yingying1,Su Dong1,Yu Xiqian123ORCID,Li Hong123ORCID,Chen Liquan123

Affiliation:

1. Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China

2. Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China

3. Beijing Frontier Research Center on Clean Energy, Huairou Division, Institute of Physics, Chinese Academy of Sciences, Beijing 101400, China

Abstract

In this article, systematic comparison of the safety performance of LiNixMnyCozO2 is made to find a balance among nickel content, energy density, and thermal stability. Three kinds of LiNixMnyCozO2 cathodes with different nickel contents are charged to different cut-off voltages from 4.2 to 4.6 V (vs Li+/Li) to obtain different energy densities, and their safety is evaluated through differential scanning calorimetry. Different characteristic temperatures are proposed to describe the cathode safety comprehensively and a relationship between energy density and thermal stability is established. It is found that cathode with lower nickel content (LiNi0.5Mn0.3Co0.2O2 and LiNi0.6 Mn0.2Co0.2O2) charging to high voltage exhibits better thermal stability compared to high nickel cathode (LiNi0.8Mn0.1Co0.1O2) at a conventional voltage. Numerical simulation based on a lumped thermal model is also performed to predict the real thermal behaviors of batteries using different cathodes. The discussion of the impact of the cut-off voltage for NMC cathodes provides a new dimension to further improve the comprehensiveness of battery material safety database and a new viewpoint on the trade-off between cathode energy density and safety.

Funder

National Key Research and Development Program of China

Natural Science Foundation of Beijing Municipality

National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3