Lunar heat flow from the observation of Chinese Chang’E 2 and LRO diviner radiometers

Author:

Zhang Dan1,Li Cui1ORCID

Affiliation:

1. School of Physics and Electronic Information, Huanggang Normal University , Huanggang 438000, China

Abstract

Lunar heat flow within 75°N to 65°S and 60°W to 100°E regions is retrieved from microwave brightness temperature observed by Chang’E-2 (CE-2) Lunar Microwave Radiometers and infrared brightness temperature observed by Lunar Reconnaissance Orbiter (LRO) Diviner Radiometers. The product of the regolith’s thermal conductivity and vertical temperature gradient yields the lunar heat flow. The vertical temperature gradient is calculated by a new temperature profile, the unknown parameters of which are determined from CE-2 microwave brightness temperature using a multi-layered lunar surface microwave brightness temperature model. The boundary condition of the temperature profile is determined by the LRO infrared brightness temperature. The measured heat flow at the Apollo 15 landing site is chosen as a calibration reference point in the retrieval process. The retrieved lunar heat flow within 75°N to 65°S and 60°W to 100°E regions ranged from 0.8 to 69.2 mW/m2. According to the retrieved results, lunar heat flow in the highlands is higher than the maria. The highest heat flux within 75°N to 65°S and 60°W to 100°E regions on the Moon are located toward the eastern highlands with an averaged heat flow value of 35.8 mW/m2, and the lowest heat flux is basically located in the typical maria such as Oceans Procellarum, Mare Imbrium, and Mare Serenitatis with an averaged heat flow value of 18.5 mW/m2.

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3