Multi-functional resonant micro-sensor for simultaneous magnetic, CO2, and CH4 detection

Author:

Zhao Wen1ORCID,Alcheikh Nouha1ORCID,Mbarek Sofiane Ben1,Younis Mohammad I.1

Affiliation:

1. Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia

Abstract

We present a highly sensitive multi-parameter sensor for magnetic and gas detection. The device is based on an in-plane doubly clamped micro-beam micro-resonator, which is electrothermally heated. It acts as a Lorentz force magnetic sensor of high sensitivity, good linearity, good repeatability, and low hysteresis effect. It also functions as a gas-sensor based on the cooling/heating effect of the micro-beam as demonstrated for carbon dioxide (CO2) and methane (CH4) detection. The CO2/CH4 sensor shows high sensitivity and excellent linearity. In addition, we demonstrate simultaneous magnetic and gas detection by tracking the frequency shift of the first two symmetric and anti-symmetric modes at the same time. We show that the sensitivity of the magnetometer is gas-independent and only depends on the frequency shift of the second mode, which is unaffected by variations of the thermal axial load. For the first time, high sensitivity to magnetic fields, CO2, and CH4 is demonstrated using the same device. The demonstrated simultaneous and highly-sensitive multi-parameter sensing platform using a single resonator is promising for smart environmental and monitoring applications.

Funder

King Abdullah University of Science and Technology

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3