Bimodal surface lattice resonance sensing based on asymmetric metasurfaces

Author:

Li Liye1ORCID,Wu Wengang123ORCID

Affiliation:

1. National Key Laboratory of Advanced Micro and Nano Manufacture Technology, School of Integrated Circuits, Peking University 1 , Beijing 100871, People's Republic of China

2. Beijing Advanced Innovation Center for Integrated Circuits 2 , Beijing 100871, People's Republic of China

3. Frontiers Science Center for Nano-Optoelectronics, Peking University 3 , Beijing 100871, People's Republic of China

Abstract

The surface lattice resonance (SLR) is a prominent mechanism to produce ultranarrow spectrum line shape, which can enhance the localized electric field and restrain radiation losses. However, the present research mainly focuses on the single-mode SLR and does not involve the multiplexing and higher-order SLRs. To promote the practicability of SLR, we propose bimodal reflection-type SLRs excited by the natural light based on three kinds of asymmetric optical metasurfaces systemically, which are applied to refractive index sensing with high figures of merit (FoMs) experimentally. The rectangular lattice metasurface breaks the C4 symmetry and produces concurrently (±1, 0) and (0, ±1) order SLRs, with FoMs of 33.50 and 28.85, respectively. In addition, the metasurface composed of two different patches belongs to a spatial multiplexing design and can also realize nearly identical SLR responses. Furthermore, the asymmetric dimer metasurface excites two SLRs with distinct orders meanwhile, where the high-order SLR originates from the trapping of the corresponding Rayleigh anomaly waves. The above-mentioned metasurface designs have flexibility and regularity, whose resonance wavelengths, sensitivities, and bimodal combinations can be attained at will by tuning period lengths, arranging different patches, or forming a dimer meta-atom. The research takes a significant step for bimodal SLR development and application, especially in the sensing field.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3