Pressure–strain interaction. III. Particle-in-cell simulations of magnetic reconnection

Author:

Barbhuiya M. Hasan1ORCID,Cassak Paul A.1ORCID

Affiliation:

1. Department of Physics and Astronomy and the Center for KINETIC Plasma Physics, West Virginia University, Morgantown, West Virginia 26506, USA

Abstract

How energy is converted into thermal energy in weakly collisional and collisionless plasma processes, such as magnetic reconnection and plasma turbulence, has recently been the subject of intense scrutiny. The pressure–strain interaction has emerged as an important piece, as it describes the rate of conversion between bulk flow and thermal energy density. In two companion studies, we presented an alternate decomposition of the pressure–strain interaction to isolate the effects of converging/diverging flow and flow shear instead of compressible and incompressible flow, and we derived the pressure–strain interaction in magnetic field-aligned coordinates. Here, we use these results to study pressure–strain interaction during two-dimensional anti-parallel magnetic reconnection. We perform particle-in-cell simulations and plot the decompositions in both Cartesian and magnetic field-aligned coordinates. We identify the mechanisms contributing to positive and negative pressure–strain interaction during reconnection. This study provides a roadmap for interpreting numerical and observational data of the pressure–strain interaction, which should be important for studies of reconnection, turbulence, and collisionless shocks.

Funder

National Science Foundation

U.S. Department of Energy

National Aeronautics and Space Administration

Publisher

AIP Publishing

Subject

Condensed Matter Physics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3