Improved flux-surface parameterization through constrained nonlinear optimization

Author:

Snoep G.12ORCID,Koenders J. T. W.13ORCID,Bourdelle C.4ORCID,Citrin J.12ORCID,

Affiliation:

1. DIFFER - Dutch Institute for Fundamental Energy Research 1 , 5612 AJ Eindhoven, Netherlands

2. Department of Applied Physics and Science Education, Eindhoven University of Technology 2 , 5612 AJ Eindhoven, Netherlands

3. Department of Mechanical Engineering, Control Systems Technology Group, Eindhoven University of Technology 3 , 5612 AJ Eindhoven, Netherlands

4. CEA (Commisariat a l'Energie Atomique), IRFM 4 , 13108 Saint-Paul-lez-Durance, France

Abstract

Parameterization of magnetic flux-surfaces is often used for magnetohydrodynamic stability analysis and microturbulence modeling in tokamaks. Shape parameters for such local parameterization of a (numerical) equilibrium are traditionally computed analytically using geometrically derived quantities. However, often the shape is approximated by the average of values for different sections of the flux-surface contour or a truncated series, which does not guarantee an optimal fit. Here, instead nonlinear least squares optimization is used to compute these parameters, with a weighted sum of squared error cost function that is robust to outliers. This method results in a lower total absolute error for both the parameterization of the flux-surface contour and the poloidal magnetic field density than current methods for several parameterizations based on the well-known “Miller geometry.” Furthermore, rapid convergence of shape parameters is achieved, no approximate geometric measurements of the contour are needed, and the method is applicable to any analytical shape parameterization. Validation with local, linear gyrokinetic simulations using these optimized shape parameters showed reduced root mean square errors in both the growth rate and frequency spectra when compared with simulations based on numerical equilibria. In particular, the popular Turnbull–Miller parameterization benefits from this approach, extending its usability closer toward the last-closed flux-surface for cases with minor up-down asymmetry.

Funder

EUROfusion

Publisher

AIP Publishing

Subject

Condensed Matter Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3