Liquid water radiolysis induced by secondary electrons generated from MeV-energy carbon ions

Author:

Tsuchida Hidetsugu12ORCID,Tezuka Tomoya1ORCID,Kai Takeshi3ORCID,Matsuya Yusuke34ORCID,Majima Takuya1ORCID,Saito Manabu12ORCID

Affiliation:

1. Department of Nuclear Engineering, Kyoto University 1 , Nishikyo-ku, Kyoto 615-8540, Japan

2. Quantum Science and Engineering Center, Kyoto University 2 , Gokasho, Uji, Kyoto 611-0011, Japan

3. Nuclear Science and Engineering Center, Japan Atomic Energy Agency 3 , 2-4 Shirakata, Tokai, Naka-gun, Ibaraki 319-1195, Japan

4. Faculty of Health Sciences, Hokkaido University 4 , Kita-12 Nishi-5, Kita-ku, Sapporo, Hokkaido 060-0812, Japan

Abstract

Fast ion beams induce damage to deoxyribonucleic acid (DNA) by chemical products, including secondary electrons, produced from interaction with liquid water in living cells. However, the production process of these chemical products in the Bragg peak region used in particle therapy is not fully understood. To investigate this process, we conducted experiments to evaluate the radiolytic yields produced when a liquid water jet in vacuum is irradiated with MeV-energy carbon beams. We used secondary ion mass spectrometry to measure the products, such as hydronium cations (H3O+) and hydroxyl anions (OH−), produced along with ·OH radicals, which are significant inducers of DNA damage formation. In addition, we simulated the ionization process in liquid water by incident ions and secondary electrons using a Monte Carlo code for radiation transport. Our results showed that secondary electrons, rather than incident ions, are the primary cause of ionization in water. We found that the production yield of H3O+ or OH− was linked to the frequency of ionization by secondary electrons in water, with these electrons having energies between 10.9 and 550 eV. These electrons are responsible for ionizing the outer-shell electrons of water molecules. Finally, we present that the elementary processes contribute to advancing radiation biophysics and biochemistry, which study the formation mechanism of DNA damage.

Funder

Japan Society for the Promotion of Science

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3