Efficiency assessment of a single surface dielectric barrier discharge plasma actuator with an optimized Suzen–Huang model

Author:

Sujar-Garrido P.1ORCID,Becerra M.2ORCID,Örlü R.1ORCID

Affiliation:

1. Department of Engineering Mechanics, KTH Royal Institute of Technology, Stockholm, Sweden

2. School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Stockholm, Sweden

Abstract

Spatial and time-resolved characteristics of a single surface dielectric barrier discharge (sDBD) actuator are experimentally and numerically investigated. The paper also focuses on the efficiency of sDBD actuators used as flow-control devices. The motivation is the need for developing a cost-effective way to optimize the balance between control performance and actuator power consumption. The study considers the steady state as often employed in experiments as well as the transient regime. Experimental methods to obtain the active power are revisited, and for the first time, the commonly used simplified phenomenological Suzen–Huang model (SHM) is used for the computation of electrical characteristics. The SHM represents fair qualitative features of the starting vortex. However, it fails when time-resolved velocity profiles are compared. Results show that even with an optimized parametrical analysis of the “tuned” plasma variables, the model is not able to fully reproduce the induced wall-jet neither spatially nor temporally. Furthermore, it underestimates the power consumption by more than 80%. The intrinsic challenge of accurately measuring the alternating current of the DBD and the instantaneous mechanical power, together with the failure of representing time-resolved velocity profiles and the underestimated electric power by the model, highlights that a better phenomenological model including gas dynamics and electric characteristics or using a fully coupled physical plasma model is required.

Funder

Swedish Energy Agency

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3