Polymer informatics for QSPR prediction of tensile mechanical properties. Case study: Strength at break

Author:

Cravero Fiorella1ORCID,Díaz Mónica F.23ORCID,Ponzoni Ignacio14ORCID

Affiliation:

1. Instituto de Ciencias e Ingeniería de la Computación (ICIC), Universidad Nacional del Sur (UNS) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Buenos Aires 8000, Argentina

2. Planta Piloto de Ingeniería Química (PLAPIQUI), Universidad Nacional del Sur (UNS) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Buenos Aires 8000, Argentina

3. Departamento de Ingeniería Química (DIQ-UNS), Bahía Blanca, Buenos Aires 8000, Argentina

4. Departamento de Ciencias e Ingeniería de la Computación, (DCIC-UNS), Bahía Blanca, Buenos Aires 8000, Argentina

Abstract

The artificial intelligence-based prediction of the mechanical properties derived from the tensile test plays a key role in assessing the application profile of new polymeric materials, especially in the design stage, prior to synthesis. This strategy saves time and resources when creating new polymers with improved properties that are increasingly demanded by the market. A quantitative structure–property relationship (QSPR) model for tensile strength at break is presented in this work. The QSPR methodology applied here is based on machine learning tools, visual analytics methods, and expert-in-the-loop strategies. From the whole study, a QSPR model composed of five molecular descriptors that achieved a correlation coefficient of 0.9226 is proposed. We applied visual analytics tools at two levels of analysis: a more general one in which models are discarded for redundant information metrics and a deeper one in which a chemistry expert can make decisions on the composition of the model in terms of subsets of molecular descriptors, from a physical-chemical point of view. In this way, with the present work, we close a contribution cycle to polymer informatics, providing QSPR models oriented to the prediction of mechanical properties related to the tensile test.

Funder

Consejo Nacional de Investigaciones Científicas y Técnicas

Secretaría General de Ciencia y Tecnología, Universidad Nacional del Sur

Agencia Nacional de Promoción Científicas y Tecnológica

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. POxload: Machine Learning Estimates Drug Loadings of Polymeric Micelles;Molecular Pharmaceutics;2024-05-28

2. Can we gain insight about the ductile behavior of materials by using polymer informatics?;Chemometrics and Intelligent Laboratory Systems;2024-01

3. Chemical design by artificial intelligence;The Journal of Chemical Physics;2022-09-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3