Implementation of a level-set-based volume penalization method for solving fluid flows around bluff bodies

Author:

Kumar PrashantORCID,Kumar VivekORCID,Chen Di,Hasegawa YosukeORCID

Abstract

A volume penalization-based immersed boundary technique is developed and thoroughly validated for fluid flow problems, specifically flow over bluff bodies. The proposed algorithm has been implemented in an open source field operation and manipulation (OpenFOAM), a computational fluid dynamics solver. The immersed boundary method offers the advantage of inserting a complex solid object inside a Cartesian grid system, and therefore, the governing equations can be applied to such a simpler grid arrangement. For capturing the fluid–solid interface more accurately, the grid is refined near the solid surface using topoSetDict and refineMeshDict utilities in OpenFOAM. In order to avoid any numerical oscillation and to compute the gradients accurately near the interface, the present volume penalization method (VPM) is integrated with a signed distance function, which is also referred to as a level-set function. Benchmark problems, such as flows around a cylinder and a sphere, are considered and thoroughly validated with the results available in the literature. For the flow over a stationary cylinder, the Reynolds number is varied so that it covers from a steady two-dimensional flow to an unsteady three-dimensional flow. The capability of the present solver has been further verified by considering the flow past a vibrating cylinder in the cross-stream direction. In addition, a flow over a sphere, which is inherently three-dimensional due to its geometrical shape, is validated in both steady and unsteady regimes. The results obtained by the present VPM show good agreement with those obtained by a body-fitted grid using the same numerical scheme as that of the VPM, and also with those reported in the literature. The present results indicate that the VPM-based immersed boundary technique can be widely applicable to scientific and engineering problems involving flow past stationary and moving bluff bodies of arbitrary geometry.

Funder

Japan Society for the Promotion of ScienceKAKENHI

New Energy and Industrial Technology Development Organization

Publisher

AIP Publishing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3