Modeling swelling effects during coffee extraction with smoothed particle hydrodynamics

Author:

Mo Chaojie1ORCID,Navarini Luciano2,Liverani Furio Suggi2,Ellero Marco134

Affiliation:

1. Basque Center for Applied Mathematics (BCAM), Alameda de Mazarredo 14, 48009 Bilbao, Spain

2. Illycaffè S.p.A, Via Flavia 110, Trieste 34147, Italy

3. Zienkiewicz Centre for Computational Engineering (ZCCE), Swansea University, Bay Campus, Swansea SA1 8EN, United Kingdom

4. IKERBASQUE, Basque Foundation for Science, Calle de María Díaz de Haro 3, 48013 Bilbao, Spain

Abstract

It is commonly assumed that coffee particles swell during filtration, but it has not been clarified how different degrees of swelling affect the extraction. In this article, we propose a grain swelling model to investigate the influences of swelling on both intra-grain and inter-grain transport. The swelling is modeled through a diffusion process of excess water into the grains. The geometric expansion of the grains is connected to the local concentration of excess water through a specified deformation gradient tensor. Diffusion of soluble compounds inside the grains is coupled with the swelling dynamics through a modified diffusion equation. Inter-grain transport is modeled by solving the Navier–Stokes equation and diffusion equations. This model is solved numerically in the framework of smoothed particle hydrodynamics, and it is used to simulate the extraction of a minimal coffee bed setup and to investigate the effect of a small degree of particle swelling ([Formula: see text] in size) on the extraction kinetics. It is found that under the normal operating parameter regime of espresso filtration, swelling affects the extraction mainly through the change of inter-grain transport. Swelling also alters the diffusion inside the grains, but this process has a secondary effect on the extraction. In general, swelling slightly impedes the extraction rate, but enhances the strength considerably at both fixed brewing time and fixed brewing volume. Our results justify the endeavor in the literatures to clarify the effect of possible swelling on brewing and preparation variables during coffee extraction.

Funder

Illycaffè S.p.a.

Agencia Estatal de Investigación

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3