Bipartite entanglement distillation by unilateral and bilateral local filters using polarizing Mach–Zehnder interferometers

Author:

P. Dhilipan1ORCID,K. Srinivasan2,G. Raghavan2ORCID

Affiliation:

1. Materials Science Group, Indira Gandhi Centre for Atomic Research, Homi Bhabha National Institute 1 , Kalpakkam 603102, India

2. School of Quantum Technology, Defence Institute of Advanced Technology 2 , Pune 411025, India

Abstract

The extraordinary correlation seen in entangled states in space-like separated regions is one of the most intriguing aspects of quantum states. Practical utility of entanglement as a resource for quantum key distribution, dense coding, or teleportation generally requires maximally entangled states. In practice, entanglement quality degrades substantially due to channel noise. The problem may be mitigated by entanglement distillation. The simplest distillation protocol is enforced by local filtering operations and classical communication. The local filtering operations are merely generalized positive operator valued measures utilizing additional degrees of freedom (DoFs) as ancillary qubits. In this work, we experimentally show that filtering on a single channel (unilateral) is equally effective as filtering on both channels (bilateral) for distillation of pure non-maximally entangled bipartite states. This result holds for a non-maximally entangled multi-qubit Greenberger-Horne-Zeilinger (GHZ) like states as well, as they show a straightforward extension of the Bell state structure. Further, we provide a theoretical comparison of the efficacy of unilateral and bilateral filtering for the case of mixed states resulting from local depolarizing noise introduced either in one or both of the non-maximally entangled pairs. Surprisingly, when noise is introduced in either one of the channels, we find that unilateral filtering on the noise-free channel outperforms the filtering on the noisy channel and bilateral filtering on both channels. We also find that bilateral filtering is more effective when both channels are noisy. A reduction in the number of local operations, in general, has the advantage of reducing the complexity of the experimental apparatus and the reduction of measurement related errors.

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3