An energy-modified quantum defect method for the analysis of Rydberg spectra: Application to 2-butyne

Author:

Jungen Ch.1ORCID,Pratt S. T.2ORCID

Affiliation:

1. Laboratoire Aimé Cotton du CNRS, Bâtiment 505 Université de Paris-Saclay 1 , F-91405 Orsay, France

2. Chemical Sciences and Engineering Division, Argonne National Laboratory 2 , Lemont, Illinois 60439, USA

Abstract

The high resolution Rydberg absorption spectrum of 2-butyne C4H6 recorded previously at the SOLEIL synchrotron facility has been interpreted using multichannel quantum defect theory (MQDT). The calculations are based on the continuum scattering calculations of Xu et al., J. Chem. Phys. 136, 154303 (2012) and of Jacovella et al., J. Phys. Chem. A 119, 12339 (2015) pertaining to the dipole-allowed excited state symmetries in absorption from the ground state. In contrast to the traditional approach of calculating low-lying electronic states first and then attempting to extend the calculations to ever higher energy, here the analysis proceeds through the extension of these detailed calculations of the electronic continuum scattering down into the discrete region of the spectrum. The continuum reaction matrices and dipole transition moments are adapted to the discrete Rydberg region via the use of an energy-modified formulation of MQDT theory and associated energy dependences of the quantum defects. The analysis reproduces more than 40 Rydberg states from n ≈ 10 down to the 3d and 4s levels with an rms error of better than 20 cm−1. These belong to five Rydberg series with three different molecular symmetries. While the approach predicts many additional series, most of these are calculated and observed to carry only little oscillator strength. The analysis shows that the Rydberg spectrum is dominated by the excitation of an e″ symmetry electron of fδ and gπ type, in line with what previous studies of the above-threshold shape resonance of 2-butyne have shown. The present study is intended to serve as an example showing how first principles continuum calculations may be useful for the interpretation of highly bound discrete states in a range that poses problems for the standard ab initio techniques. The quantitative treatment of the dipole absorption cross sections is deferred to a future paper.

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3