Flow state analysis of molten salt in shell and tube heat exchanger with perforated baffles

Author:

Xie Qiyue1ORCID,Liu Yu1ORCID,Liang Chao23ORCID,Fu Qiang1ORCID,Wang Xiaoli4ORCID

Affiliation:

1. School of Electrical & Information Engineering, Changsha University of Science & Technology 1 , Changsha 410114, China

2. School of Energy and Power Engineering, Changsha University of Science & Technology 2 , Changsha 410114, China

3. Zhuzhou CRRC Times Semiconductor Co., Ltd. 3 , Zhuzhou 412000, China

4. School of Automation, Central South University 4 , Changsha 410083, China

Abstract

Addressing the issue of flow dead zones in molten salt heat exchangers in concentrating solar power generation systems, this study focuses on the conventional shell and tube heat exchanger using molten salt and heat transfer oil as the working medium. The flow dynamics of molten salt within the heat exchanger are analyzed. To quantify the volume fraction of the molten salt flow dead zones, the residence time distribution curve is employed. Four baffle salt flow configurations are comparatively assessed. Findings indicate that the four opening configurations effectively enhance the reduction of molten salt flow dead zones, with volume fraction reductions ranging from 57.8% to 68.21%. Notably, configuration 4 yields the most optimal results. Furthermore, molten salt flow states in varying regions were examined: the innermost flow dead zone exhibited the highest improvement, followed by the middle area, with the edge area showing the least enhancement. Additionally, the impact of the opening diameter on the flow dead zone was explored. The volume fraction of the molten salt flow dead zone diminishes as the opening diameter expands, with the rate of this change also decelerating. Given that molten salt at the opening manifests as a jet, enlarging the opening diameter lessens the pressure differential across the baffle, subsequently weakening the jet's intensity and its influence on the flow dead zone.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hunan Province

Publisher

AIP Publishing

Subject

Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3