Spiral instability modes on rotating cones in high-Reynolds number axial flow

Author:

Tambe Sumit1ORCID,Schrijer Ferry1ORCID,Veldhuis Leo1ORCID,Gangoli Rao Arvind1ORCID

Affiliation:

1. AWEP, Aerospace Engineering, Delft University of Technology, Klyuverweg-1, 2629HS Delft, The Netherlands

Abstract

This work shows the behavior of an unstable boundary-layer on rotating cones in high-speed flow conditions: high Reynolds number [Formula: see text], low rotational speed ratio [Formula: see text], and inflow Mach number M =  0.5. These conditions are most-commonly encountered on rotating aeroengine nose cones of transonic cruise aircraft. Although it has been addressed in several past studies, the boundary-layer instability on rotating cones remains to be explored in high-speed inflow regimes. This work uses infrared-thermography with a proper orthogonal decomposition approach to detect instability-induced flow structures by measuring their thermal footprints on rotating cones in high-speed inflow. The observed surface temperature patterns show that the boundary-layer instability induces spiral modes on rotating cones, which closely resemble the thermal footprints of the spiral vortices observed in past studies at low-speed flow conditions: [Formula: see text], S >  1, and [Formula: see text]. Three cones with half-cone angles [Formula: see text], and [Formula: see text] are tested. For a given cone, the Reynolds number relating to the maximum amplification of the spiral vortices is found to follow an exponential relation with the rotational speed ratio S, extending from the low- to high-speed regime. At a given rotational speed ratio S, the spiral vortex angle appears to be as expected from the low-speed studies, irrespective of the half-cone angle.

Funder

European Union's Horizon 2020 program: Cleansky 2

European Union's Horizon 2020 program: CENTRELINE

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3