Research on topology optimization method of surface support structure based on leaf vein growth process

Author:

Dong Xin1ORCID,Yao Leijiang2,Liu Hongjun2ORCID,Ding You1ORCID

Affiliation:

1. Scholl of Aeronautics, Northwestern Polytechnical University 1 , Xi’an 710072, China

2. National Key Laboratory of Science and Technology on UAV Laboratory, Northwestern Polytechnical University 2 , Xi’an 710065, China

Abstract

In this paper, a biomimetic topology optimization design method that simulates the growth pattern of leaf veins is proposed for the design of the support structure of ultra-light airfoil-like solar cells in the solar powered unmanned aerial vehicle. This method simulates the optimal growth process of main vein morphology through the topology change of dynamic point groups to obtain an optimized topological main support structure and then generates a Voronoi grid structure in the area surrounded by the main support structure to increase the local support for the battery. The whole process is combined with genetic algorithm to simulate the optimal distribution strategy of leaf vein growth by inputting a small number of parameters. Compared with the traditional grid support structure, the support structure obtained by simulating the leaf vein growth optimization strategy can provide more efficient support for the solar panel and avoid damage to the solar cell.

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3