Microstructural diversity, nucleation paths, and phase behavior in binary mixtures of charged colloidal spheres

Author:

Lorenz Nina1ORCID,Gupta Ishan2ORCID,Palberg Thomas1ORCID

Affiliation:

1. Institute of Physics, Johannes Gutenberg University 1 , 55122 Mainz, Germany

2. Graz University of Technology, Institute of Applied Mechanics 2 , Graz, Austria

Abstract

We study low-salt, binary aqueous suspensions of charged colloidal spheres of size ratio Γ = 0.57, number densities below the eutectic number density nE, and number fractions of p = 1.00–0.40. The typical phase obtained by solidification from a homogeneous shear-melt is a substitutional alloy with a body centered cubic structure. In strictly gas-tight vials, the polycrystalline solid is stable against melting and further phase transformation for extended times. For comparison, we also prepare the same samples by slow, mechanically undisturbed deionization in commercial slit cells. These cells feature a complex but well reproducible sequence of global and local gradients in salt concentration, number density, and composition as induced by successive deionization, phoretic transport, and differential settling of the components, respectively. Moreover, they provide an extended bottom surface suitable for heterogeneous nucleation of the β-phase. We give a detailed qualitative characterization of the crystallization processes using imaging and optical microscopy. By contrast to the bulk samples, the initial alloy formation is not volume-filling, and we now observe also α- and β-phases with low solubility of the odd component. In addition to the initial homogeneous nucleation route, the interplay of gradients opens various further crystallization and transformation pathways leading to a great diversity of microstructures. Upon a subsequent increase in salt concentration, the crystals melt again. Wall-based, pebble-shaped β-phase crystals and facetted α-crystals melt last. Our observations suggest that the substitutional alloys formed in bulk experiments by homogeneous nucleation and subsequent growth are mechanically stable in the absence of solid–fluid interfaces but thermodynamically metastable.

Funder

Deutsche Forschungsgemeinschaft

Johannes Gutenberg-Universität Mainz

Center for INnovative and Emerging Materials

Deutscher Akademischer Austauschdienst

International Association for the Exchange of Students for Technical Experience

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3